Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Mar Pollut Bull ; 193: 115142, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300956

RESUMO

Marine dead zones caused by hypoxia have expanded over the last decades and pose a serious threat to coastal marine life. We tested sediment microbial fuel cells (SMFCs) for their potential to reduce the release of sulfide from sediments, in order to potentially protect the marine environment from the formation of such dead zones. Steel electrodes as well as charcoal-amended electrodes and corresponding non-connected controls of a size of together 24 m2 were installed in a marine harbour, and the effects on water quality were monitored for several months. Both pure steel electrodes and charcoal-amended electrodes were able to reduce sulfide concentrations in bottom water (92 % to 98 % reduction, in comparison to disconnected control steel electrodes). Also phosphate concentrations and ammonium were drastically reduced. SMFCs might be used to eliminate hypoxia at sites with high organic matter deposition and should be further investigated for this purpose.


Assuntos
Carvão Vegetal , Sedimentos Geológicos , Humanos , Sulfetos , Hipóxia , Eletrodos , Aço
2.
Environ Sci Technol ; 57(23): 8776-8784, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267390

RESUMO

The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field study on an HCH-contaminated field site was conducted to investigate the fate of HCH, particularly α-HCH in tree trunks using multielement compound-specific isotope analysis (ME-CSIA) and enantiomer fractionation. The results indicate that α-HCH was transformed, as evidenced by higher δ13C and δ37Cl values detected across different growth ring sections and in the bark compared to those in muck and soil. Remarkably, in the middle growth ring section, δ13C values of HCH were only marginally higher or comparable to those in muck, whereas δ37Cl values were higher than those of the muck, indicating a different transformation mechanism. Moreover, the δ37Cl values of ß-HCH also increased in the tree trunks compared to those in soil and muck, implying a transformation of ß-HCH. Additionally, dual-element isotope analysis revealed that there are different transformation mechanisms between the middle growth rings and other sections. Our findings suggest that the transformation of HCHs in trunks could bias quantitative phytoscreening approaches; however, ME-CISA offers an option to estimate the degradation extent.


Assuntos
Hexaclorocicloexano , Árvores , Isótopos de Carbono/análise , Biodegradação Ambiental , Solo
3.
Mol Metab ; 73: 101738, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182561

RESUMO

OBJECTIVE: The olfactory bulb (OB) codes for sensory information and contributes to the control of energy metabolism by regulating foraging and cephalic phase responses. Mitral cells are the main output neurons of the OB. The glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) system in the OB (GLP-1OB) has been shown to be a major regulator of mitral cell activity but its function in vivo is unclear. Therefore, we investigated the role of GLP-1OB in foraging behavior and odor-evoked Cephalic Phase Insulin Release (CPIR). METHODS AND RESULTS: By fluorescent labeling, we confirmed the presence of GLP-1 producing neurons and the expression of GLP-1R in the mouse OB. In response to food odor presentation, we collected blood, quantified plasma insulin by ELISA and showed the existence of an odor-evoked CPIR in lean mice but its absence in obese animals. Expression of shRNA against preproglucagon mRNA in the OB resulted in blunted CPIR in lean mice. Injecting Exendin (9-39), a GLP-1R antagonist, into the OB of lean mice also resulted in decreased CPIR. Since parasympathetic cholinergic input to the pancreas is known to be partly responsible for CPIR, we systemically administered the muscarinic M3 receptor antagonist 4-DAMP which resulted in a reduced odor-evoked CPIR. Finally, local injection of Exendin (9-39) in the OB extinguished olfactory foraging in lean mice whereas the injection of the GLP-1R agonist Exendin-4 rescued the loss of foraging behavior in obese mice. CONCLUSIONS: Our results demonstrate that GLP-1OB controls olfactory foraging and is required for odor-evoked CPIR. We describe a new crucial brain function for GLP-1 and GLP-1R expressed within the brain.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina , Animais , Camundongos , Insulina/metabolismo , Odorantes , Bulbo Olfatório/metabolismo
4.
Front Plant Sci ; 14: 1161334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089641

RESUMO

Plant kingdoms are facing increasingly harsh environmental challenges marked by the coexposure of salinity and pollution in the pedosphere and elevated CO2 and temperature in the atmosphere due to the rapid acceleration of industrialization and global climate change. In this study, we deployed a hydroponics-based experiment to explore the individual and mutual effects of different temperatures (low temperature, T1: 23°C; high temperature, T2: 27°C) and CO2 concentrations (ambient CO2: 360 ppm; medium CO2: 450 ppm; high CO2: 700 ppm) on the uptake and translocation of sodium chloride (NaCl, 0.0, 0.2, 0.6, and 1.1 g Na/L) and cadmium nitrate (Cd(NO3)2·4H2O, 0.0, 0.2, 1.8, and 5.4 mg Cd/L) by rice seedlings. The results indicated that Cd and Na exposure significantly (P< 0.05) inhibited plant growth, but T2 and medium/high CO2 alleviated the effects of Cd and Na on plant growth. Neither significant synergistic nor antagonistic effects of Cd and Na were observed, particularly not at T1 or high CO2. At increasing temperatures, relative growth rates increased despite higher concentrations of Cd and Na in both rice roots and shoots. Similarly, higher CO2 stimulated the growth rate but resulted in significantly lower concentrations of Na, while the Cd concentration was highest at medium CO2. Coexposure experiments suggested that the concentration of Cd in roots slightly declined with additional Na and more at T2. Overall, our preliminary study suggested that global climate change may alter the distribution of mineral and toxic elements in rice plants as well as the tolerance of the plants.

5.
Environ Toxicol Chem ; 42(4): 793-804, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36785949

RESUMO

Plant uptake of pharmaceuticals and personal care products (PPCPs) has been recognized as a potential path to human exposure. Most existing regressions and uptake models are limited to neutral organic compounds, but 80% of pharmaceuticals and an unknown number of personal care products ionize under environmentally relevant conditions. A widely used generic plant uptake model was expanded step-by-step with processes relevant for weak and strong acids and bases, such as ionization, membrane permeability, ion trap, phloem transport, and sorption to proteins. The differential equation system was solved analytically, and the equations were implemented in a spreadsheet version. The changes in predicted plant uptake of neutral substances, acids, and bases were found for a range of key input data (log KOW , pKa , pH, sorption to proteins). For neutral compounds, sorption to proteins and phloem transport are of relevance only for the more polar compounds (low log KOW , ≤2). Weak acids (pKa ≤6) are trapped in phloem due to pH-related effects, and in roots when pH in soil is low (pH 4-5). Cations sorb stronger and hence show less bioavailability and less translocation than anions. Sorption to proteins reduces translocation to leaves and fruits for all substances, but this is more evident for polar and ionic compounds that have negligible sorption to lipids. The new generic model considers additional processes that are of relevance for polar and ionizable substances. It might be used instead of existing standard approaches for chemical risk assessment and assessment of the environmental fate of PPCPs. Environ Toxicol Chem 2023;42:793-804. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cosméticos , Humanos , Solo/química , Plantas , Compostos Orgânicos/química , Preparações Farmacêuticas
6.
Mol Metab ; 68: 101665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592795

RESUMO

OBJECTIVE: Overweight and obesity are endemic in developed countries, with a substantial negative impact on human health. Medications developed to treat obesity include agonists for the G-protein coupled receptors glucagon-like peptide-1 (GLP-1R; e.g. liraglutide), serotonin 2C (5-HT2CR; e.g, lorcaserin), and melanocortin4 (MC4R) which reduce body weight primarily by suppressing food intake. However, the mechanisms underlying the therapeutic food intake suppressive effects are still being defined and were investigated here. METHODS: We profiled PPG neurons in the nucleus of the solitary tract (PPGNTS) using single nucleus RNA sequencing (Nuc-Seq) and histochemistry. We next examined the requirement of PPGNTS neurons for obesity medication effects on food intake by virally ablating PPGNTS neurons. Finally, we assessed the effects on food intake of the combination of liraglutide and lorcaserin. RESULTS: We found that 5-HT2CRs, but not GLP-1Rs or MC4Rs, were widespread in PPGNTS clusters and that lorcaserin significantly activated PPGNTS neurons. Accordingly, ablation of PPGNTS neurons prevented the reduction of food intake by lorcaserin but not MC4R agonist melanotan-II, demonstrating the functional significance of PPGNTS 5-HT2CR expression. Finally, the combination of lorcaserin with GLP-1R agonists liraglutide or exendin-4 produced greater food intake reduction as compared to either monotherapy. CONCLUSIONS: These findings identify a necessary mechanism through which obesity medication lorcaserin produces its therapeutic benefit, namely brainstem PPGNTS neurons. Moreover, these data reveal a strategy to augment the therapeutic profile of the current frontline treatment for obesity, GLP-1R agonists, via coadministration with 5-HT2CR agonists.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Liraglutida , Humanos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Serotonina/metabolismo , Apetite , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Núcleo Solitário/metabolismo , Ingestão de Alimentos , Neurônios/metabolismo
7.
Environ Toxicol Chem ; 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920339

RESUMO

The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2022;00:1-11. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

8.
Sci Total Environ ; 844: 156973, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772559

RESUMO

Microbial fuel cells (MFCs) have great promise for power generation by oxidizing organic wastewater, yet the challenge to realize high efficiency in simultaneous energy production and resource recovery remains. In this study, we designed a novel MFC anode by synthesizing S-doped NiFe2O4 nanosheet arrays on carbon cloth (S10-NiFe2O4@CC) to build a three-dimensional (3D) hierarchically porous structure, with the aim to regulate the microbial community of sulfur-cycling microbes in order to enhance power production and elemental sulfur (S0) recovery. The S10-NiFe2O4@CC anode obtained a faster start-up time of 2 d and the highest power density of 4.5 W/m2 in acetate-fed and mixed bacteria-based MFCs. More importantly, sulfide removal efficiency (98.3 %) (initial concentration of 50 mg/L S2-) could be achieved within 3 d and sulfur (S8) could be produced. Microbial community analysis revealed that the S10-NiFe2O4@CC anode markedly enriched sulfur-oxidizing bacteria (SOB) and promoted enrichment of SOB and sulfate-reducing bacteria (SRB) in the bulk solution as well, leading to the enhancement of power generation and S0 recovery. This study shows how carefully designing and optimizing the composition and structure of the anode can lead to the enrichment of a multifunctional microbiota with excellent potential for sulfide removal and resource recovery.


Assuntos
Fontes de Energia Bioelétrica , Bactérias , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Oxirredução , Sulfetos/química , Enxofre
9.
Monatsschr Kinderheilkd ; 170(7): 632-647, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35645410

RESUMO

Background: Based on 190,000 applications for asylum, Germany remains a top destination for refugees and asylum seekers in Europe. The updated recommendations are considered evidence-based and targeted guidelines for the diagnosis and prevention of infectious diseases in underage refugees and asylum seekers. Objective: The objective of these recommendations is to guide medical staff in the care of minor refugees, in particular to:1. assure early recognition and completion of incomplete vaccination status,2. diagnose and treat common infectious diseases,3. recognize and treat imported infectious diseases that are considered uncommon to the German healthcare system. Material and methods: The recommendations have been formally written to be published as AWMF S1 guidelines.This includes a representative expert panel appointed by several professional societies, and formal adoption of the recommendations by the board of directors of all societies concerned. Results: Recommendations are given for the medical evaluation of minor refugees, including medical history and physical examination. A blood count as well as screening for tuberculosis and hepatitis B should be offered to all minor refugees. In addition, screening for other infectious diseases like hepatitis C, HIV or schistosomiasis should be considered depending on age and country of origin. Vaccinations are recommended based on both age and country of origin. Conclusion: As thousands of minor refugees continue to seek shelter in Germany every year, professional health care with adequate financial support needs to be established to ensure an appropriate medical treatment of this particularly vulnerable population.

10.
Monatsschr Kinderheilkd ; 170(6): 539-547, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35637934

RESUMO

This current consensus paper for long COVID complements the existing AWMF S1 guidelines for long COVID with a detailed overview on the various clinical aspects of long COVID in children and adolescents. Members of 19 different pediatric societies of the DGKJ convent and collaborating societies together provide expert-based recommendations for the clinical management of long COVID based on the currently available but limited academic evidence for long COVID in children and adolescents. It contains screening questions for long COVID and suggestions for a structured, standardized pediatric medical history and diagnostic evaluation for patients with suspected long COVID. A time and resource-saving questionnaire, which takes the clinical complexity of long COVID into account, is offered via the DGKJ and DGPI websites as well as additional questionnaires suggested for an advanced screening of specific neurocognitive and/or psychiatric symptoms including post-exertional malaise (PEM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). According to the individual medical history as well as clinical signs and symptoms a step by step diagnostic procedure and a multidisciplinary therapeutic approach are recommended.

11.
Mar Pollut Bull ; 179: 113662, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35490487

RESUMO

Metal contamination is a threat for marine ecosystems from an environmental, economic and public health perspective, particularly in regions where local communities rely on marine resources such as the Gulf of Guinea. Plankton are the point of entry for metals in the marine food web, potentially contaminating seafood. We investigated the bioaccumulation of 12 metals in three size classes of plankton from the coast of Ghana. Metal concentrations were high in the micro- and mesoplankton, in particular for Mn, Mo and Zn (up to 100 mg kg-1) and Fe (>100 mg kg-1). All metals significantly bioaccumulated (103-106 L kg-1) and the bioaccumulation increased from the smallest to larger size fractions, suggesting a biomagnification. These metals included the highly toxic elements As, Cd and Pb. Our results highlight the need to monitor metal occurrence in the Gulf of Guinea, to reduce pollution and ensure food safety, in accordance with the UN SDG #14.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Guiné , Metais Pesados/análise , Plâncton , Poluentes Químicos da Água/análise
13.
Integr Environ Assess Manag ; 18(6): 1454-1487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34989108

RESUMO

The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco/métodos , Biodegradação Ambiental
14.
Br J Pharmacol ; 179(4): 557-570, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34323288

RESUMO

This review considers the similarities and differences between the physiological systems regulated by gut-derived and neuronally produced glucagon-like peptide 1 (GLP-1). It addresses the questions of whether peripheral and central GLP-1 sources constitute separate, linked or redundant systems and whether the brain GLP-1 system consists of disparate sections or is a homogenous entity. This review also explores the implications of the answers to these questions for the use of GLP-1 receptor agonists as anti-obesity drugs. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Encéfalo/metabolismo , Ingestão de Alimentos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Obesidade/tratamento farmacológico
15.
Sci Total Environ ; 806(Pt 3): 151316, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743878

RESUMO

BACKGROUND: Electric scooters become popular in Western cities as new mobility option. Start-up companies rent out e-scooters in major cities, such as Paris, Cologne, Copenhagen and elsewhere. However, the scooters are frequently vandalized and thrown into surface waters. There is concern about a new kind of water pollution from leaking scooter batteries. METHODS: Two scooter batteries (lithium ion type) were dumped into artificial 200 L ponds for over a year. Concentrations of Li, Mn, Co, Ni and Cu in the pond water were several times analyzed by ICP-MS over a period of 16 months. RESULTS: In ponds with dumped batteries, copper levels in water were elevated (8.9 to 40.6 µg/L versus ≤0.6 µg/L in controls), as well as nickel levels (4.8 to 7.2 µg/L versus ≤0.6 µg/L in controls), while lithium concentrations were only slightly higher (7.1 to 9.6 µg/L versus 6.4 to 6.7 µg/L in controls), as were levels of Co (<1 µg/L, except one sample). Manganese was lower in ponds with battery than in controls. CONCLUSIONS: Less than 1‰ of the toxic metals Ni, Co and Cu stored in the battery pack was recovered from the test ponds, and these amounts can be explained by corrosion of the connections and of the steel encapsulation of the batteries. No elevated levels of Mn were observed in the test ponds. We conclude that the batteries are well sealed against leaking, and dilution in natural water bodies will minimize the hazard to aquatic organisms. Nonetheless, rapid removal of batteries dumped by vandals into rivers and lakes from the surface waters is advised because no sealing can hold forever.


Assuntos
Fontes de Energia Elétrica , Lagoas , Água Doce , Lítio , Rios
16.
Sci Total Environ ; 796: 148880, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271375

RESUMO

Sediment microbial fuel cells (SMFCs) have previously been successfully used to reduce phosphate release from the sediments of eutrophic lakes. In this study, we investigate the risk that SMFCs stimulate sediment decomposition with the unwanted side effect being the release of legacy pollutants stored in sediments. Electrode pairs (16 m2 each) were installed in a eutrophic lake in Denmark and the electricity production was monitored over more than a year at three electrode fields. Equations were derived that allow calculation of the substrate turnover by the SMFCs from the working potential, the open circuit potential, and the external resistance of the SMFCs. The resulting turnover data suggest that the decomposition of the sediment is only slightly expedited by the SMFCs, and that the decomposition process is not significantly stimulated by the type of SMFCs installed in the lake. The measured maximum power density with stainless steel electrodes in the lake sediment was 0.9 mW/m2, which was sufficient to reduce P outflux from sediment. At this power density, the decomposition half-life of the lake sediment (top 5 cm) is calculated to be 277 years, which is only about 10% of natural lake sediment decomposition half-lives. Higher power densities are not necessary for P fixation but inadvertently increase the risk that legacy pollutants buried in the sediment are released.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Sedimentos Geológicos , Lagos
17.
Basic Res Cardiol ; 116(1): 32, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33942194

RESUMO

Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.


Assuntos
Arteríolas/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Incretinas/farmacologia , Infarto da Artéria Cerebral Média/prevenção & controle , Precondicionamento Isquêmico , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional
18.
Sci Total Environ ; 783: 146805, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866160

RESUMO

Thiocyanate (SCN-) present in irrigation water can have negative effects on plant growth and crop yields. Addition of plant growth regulators (PGRs) can alleviate toxic stress to plants. In the current study, we established a grey situation decision-making model (GSDM) to integrate the data of RT-qPCR analysis for screening the optimal addition of PGRs to minimise pollution stress. The effects of PGRs (i.e., jasmonic acid [JA], indole-3-acetic acid [IAA] and sodium hydrosulfide [NaHS]) on the abundance of IAA oxidation and conjugation-related genes in rice seedlings under potassium thiocyanate (KSCN) exposure was examined. The results obtained from RT-qPCR analysis can roughly present the mitigating effects of IAA, JA, and NaHS on rice seedlings under KSCN stress. Integration of RT-qPCR analysis and GSDM further quantified the regulatory effects of PGRs. Simulation results showed that the effect of NaHS on the gene expression at KSCN exposure is apparently better than that of JA and IAA. Our study provides a new simple, efficient, and cheap approach to identify the optimal plant growth regulators under the stress of environmental pollution.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Expressão Gênica , Oryza/genética , Plântula , Tiocianatos
19.
Water Res ; 198: 117108, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901841

RESUMO

Phosphate pollution in lakes poses an intractable remediation challenge. Accumulated stocks of phosphorus in sediments cause high concentrations in the overlying water despite elimination of external sources. We propose to use sediment microbial fuel cells (SMFCs) for lake remediation by sediment phosphorus immobilization. The hypothesis is that SMFCs can increase sediment redox potential at the top layer, and that such changes will allow the sediment to retain phosphorus as immobile species. This study placed an emphasis on scalability, practicality, and use of low-cost materials. Stainless steel net was selected as electrode material, and modifications were tested: (i) chronoamperometric operation with anode poised at +399 mV (versus standard hydrogen potential); (ii) injection of graphite slurry; and (iii) coating with nickel-carbon matrix. Stainless steel electrodes were implemented in laboratory microcosms (1.3 L) and at field scale in a eutrophic freshwater lake. All tests were carried out in untreated sediment and water from Lake Søllerød, Denmark. Phosphate immobilization was shown at lab scale, with 85% decrease in overlying water using steel electrodes. At field scale maximum phosphate decrease of 94% was achieved in the water body above a 16 m2 stainless steel SMFC electrode. Results are promising and warrant further study, including remediation trials at full scale. Added benefits include degradation of sediment organic matter and pollutants, inhibition of methane and sulfide emission and production of electricity.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Eletrodos , Sedimentos Geológicos , Lagos , Fosfatos , Fósforo
20.
Nat Metab ; 3(2): 258-273, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589843

RESUMO

The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.


Assuntos
Sistema Nervoso Central/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Sistema Nervoso Periférico/fisiologia , Resposta de Saciedade/fisiologia , Animais , Ingestão de Alimentos , Feminino , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proglucagon/metabolismo , Receptores de Ocitocina/metabolismo , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA